Acta Cryst. (1998). C54, 441-442

2-(Nitroamino)pyridine

Olyana Angelova, ${ }^{a}$ Rosica Petrova ${ }^{a}$ and Vladimir Atanasov ${ }^{b}$
${ }^{a}$ Bulgarian Academy of Sciences, CL Mineralogy \& Crystallography, Rakovski str. 92, 1000 Sofia, Bulgaria, and ${ }^{b}$ University of Sofia, Chemistry Department, J. Bauchier I, 1027 Sofia, Bulgaria. E-mail: jmacicek@bgcict.acad.bg

(Received 28 May 1997; accepted 5 November 1997)

Abstract

In the title compound, $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}_{2}$, the amino H atom was localized in the vicinity of the endocyclic N atom at a distance of 0.94 (2) \AA, showing that the compound exists in the form of a zwitterion. Bond lengths and molecular planarity [within 0.048 (1) \AA] correspond to an overall π-conjugated system. The molecules are coupled as centrosymmetric dimers through short $\mathrm{N}_{\text {endo }}-\mathrm{H} \cdots \mathrm{N}_{\text {exo }}$ hydrogen bonds.

Comment

2-(Nitroamino)pyridine is of potential interest as a non-linear material due to its overall conjugation and molecular polarity. Also, it is an effective reagent for the synthesis of 3 - and 5-nitro-2-aminopyridines (Deady et al., 1979, 1982); knowledge of its structure could throw light on the reaction mechanism.

The title compound undergoes an intramolecular amino H -atom rearrangement to give a zwitterion, (I), in the solid state.

(I)

Bond lengths and molecular planarity [within 0.048 (1) \AA] correspond to an overall π-conjugated system (Allen et al., 1987). The intramolecular C3H3 \cdots O1 hydrogen bond stabilizes the molecular planarity and is a factor facilitating nucleophilic attack at position 3 in the pyridinium ring. The molecules are coupled to form centrosymmetric dimers through short $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{~N} 2$ and $\mathrm{C} 6-\mathrm{H} 6 \cdots \mathrm{O} 2$ bonds (Table 3). The dimers are further hydrogen bonded by relatively short $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$-type interactions. The molecules are plane-to-plane stacked along the b axis, with an interplanar distance of 3.678 (3) A.

Fig. 1. View of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2. Projection of the structure down the b axis. Dotted lines denote hydrogen bonds. Arrows are for bonds to symmetry-equivalent atoms.

Experimental

2-(Nitroamino)pyridine was synthesized from 2-aminopyridine following the procedure of Deady et al. (1982). 2-Aminopyridine was treated with concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}-\mathrm{HNO}_{3}$ (1:1) at .273 K for 1 h . The mixture was neutralized with aqueous NH_{3} to pH 3 . The crude product was recrystallized from aqueous ethanol. Single crystals were grown by slow evaporation of an acetonitrile solution.

Crystal data
$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}_{2}$
$M_{r}=139.11$
Monoclinic
I2/a
$a=18.331$ (4) \AA
$b=3.678$ (3) \AA
$c=17.052(1) \AA$
$\beta=98.43$ (2) ${ }^{\circ}$
$V=1137.3(7) \AA^{3}$
$Z=8$
$D_{x}=1.624 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Enraf-Nonius CAD-4
diffractometer
$\omega-2 \theta$ scans
Absorption correction: none 6136 measured reflections
1692 independent reflections 1220 reflections with
$I>3 \sigma(I)$

Refinement

Refinement on F
$R=0.043$
$w R=0.071$
$S=1.232$
1220 reflections
95 parameters
H atoms: see below
$w=1 /\left[\sigma^{2}(F)+(0.045 F)^{2}\right]$
$(\Delta / \sigma)_{\max }=0.018$
$R_{\text {int }}=0.044$
$\theta_{\text {max }}=30.0^{\circ}$
$h=-25 \rightarrow 25$
$k=-5 \rightarrow 5$
$l=-22 \rightarrow 22$
3 standard reflections frequency: 120 min intensity decay: 1.6%

$$
\begin{aligned}
& \Delta \rho_{\max }=0.143 \mathrm{e}^{-3} \AA^{-3} \\
& \Delta \rho_{\min }=-0.095 \mathrm{e}^{-3}
\end{aligned}
$$

Extinction correction: Stout \& Jensen (1968), formula 17.16

Extinction coefficient: $3.976(6) \times 10^{-6}$
Scattering factors from SDP/PDP (Enraf-Nonius, 1985)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters (\AA^{2})

$U_{\text {cq }}=(1 / 3) \Sigma_{i} \Sigma_{j} U^{1 j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$U_{\text {eq }}$
01	0.41131 (6)	-0.1925 (4)	0.15292 (7)	0.0545 (3)
02	0.31355 (7)	0.0426 (4)	0.08584 (7)	0.0601 (3)
N 1	0.31503 (6)	0.0694 (3)	0.34356 (6)	0.0311 (2)
N2	0.32041 (6)	0.0516 (4)	0.21382 (6)	0.0342 (3)
N3	0.35095 (7)	-0.0373 (4)	0.14993 (7)	0.0378 (3)
2	0.35668 (7)	-0.0279 (3)	0.28721 (7)	0.0281 (3)
C3	0.42603 (7)	-0.1823 (4)	0.31444 (8)	0.0339 (3)
C4	0.44784 (8)	-0.2285 (4)	0.39414 (9)	0.0391 (3)
C5	0.40256 (8)	-0.1269 (4)	0.44970 (9)	0.0412 (4)
C6	0.33611 (8)	0.0230 (5)	0.42173 (8)	0.0375 (3)

Table 2. Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$

	$1.239(2)$	$\mathrm{N} 2-\mathrm{C} 2$	$1.360(2)$
$\mathrm{O} 1-\mathrm{N} 3$	$1.237(2)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.407(2)$
$\mathrm{O} 2-\mathrm{N} 3$	$1.360(2)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.370(2)$
$\mathrm{N} 1-\mathrm{C} 2$	$1.343(2)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.399(2)$
$\mathrm{N} 1-\mathrm{C} 6$	$1.336(2)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.358(2)$
$\mathrm{N} 2-\mathrm{N} 3$	$119.4(1)$	$\mathrm{O} 2-\mathrm{N} 3-\mathrm{N} 2$	$114.7(1)$
$\mathrm{N} 3-\mathrm{N} 2-\mathrm{C} 2$	$121.4(1)$	$\mathrm{N} 1-\mathrm{C} 2-\mathrm{N} 2$	$110.1(1)$
$\mathrm{O} 1-\mathrm{N} 3-\mathrm{O} 2$	$123.9(1)$		
$\mathrm{O} 1-\mathrm{N} 3-\mathrm{N} 2$			

Table 3. Hydrogen-bonding geometry ($\left(\mathrm{A}^{\circ}{ }^{\circ}\right)$

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdot \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{HN} \cdot \cdots 2^{\mathrm{i}}$	$0.95(2)$	$1.95(2)$	$2.890(3)$	$175.7(18)$
$\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{Ol}$	0.95	2.18	$2.728(2)$	115.4
$\mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{Ol}^{\mathrm{ii}}$	0.95	2.56	$3.291(2)$	134.3
$\mathrm{C} 5-\mathrm{H} 5 \cdots 1^{\mathrm{iii}}$	0.95	2.60	$3.509(2)$	160.3
$\mathrm{C} 6-\mathrm{H} 6 \cdots \mathrm{O}^{\mathrm{iv}}$	0.95	2.54	$3.300(2)$	137.5
$\mathrm{C} 6-\mathrm{H} 6 \cdots 2^{\mathrm{i}}$	0.95	2.55	$3.161(2)$	122.1

Symmetry codes: (i) $\frac{1}{2}-x, \frac{1}{2}-y, \frac{1}{2}-z$; (ii) $1-x, y-\frac{1}{2}, \frac{1}{2}-z$; (iii) $x,-\frac{1}{2}-y, \frac{1}{2}+z$; (iv) $x, \frac{1}{2}-y, \frac{1}{2}+z$.

The H atoms bonded to C atoms were constrained to idealized positions, while the amino H atom was located from a difference Fourier map and further included in the refinement. All H atoms were assigned isotropic U values of $0.0506 \AA^{2}$.

Data collection: CAD-4 Users Manual (Enraf-Nonius, 1988). Data reduction: SDP/PDP (Enraf-Nonius, 1985). Program(s) used to solve structure: MULTAN11/82 (Main et al.,
1982). Program(s) used to refine structure: SDP/PDP. Molecular graphics: ORTEPII (Johnson, 1976). Software used to prepare material for publication: KAPPA (Macíček, 1992).

This work was supported by the Bulgarian Academy of Sciences and the Bulgarian National Science Fund (Projects Ch-402 and Ch-588).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SK1128). Services for accessing these data are described at the back of the journal.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.
Deady, L. W., Grimmett, M. R. \& Potts, C. H. (1979). Tetrahedron, 35, 2895-2900.
Deady, L. W., Korytsky, O. L. \& Rowe, J. E. (1982). Aust. J. Chem. 35, 2025-2034.
Enraf-Nonius (1985). Structure Determination Package. SDP/PDP Users Guide. Version 3.0. Enraf-Nonius, Delft, The Netherlands.
Enraf-Nonius (1988). CAD-4 Users Manual. Version 5.0. EnrafNonius, Delft, The Netherlands.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Macíček, J. (1992). KAPPA. Program for the Preparation of Material for Publication from a CIF File. Bulgarian Academy of Sciences, Sofia, Bulgaria.
Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declercq, J.-P. \& Woolfson, M. M. (1982). MULTAN11/82. A System of Computer Programs for the Automatic Solution of Crustal Structures from X-ray Diffraction Data. Universities of York, England, and Louvain, Belgium.
Stout, G. H. \& Jensen, H. (1968). In X-ray Structure Determination. New York: MacMillan.

Acta Cryst. (1998). C54, 442-444

5-Amino-3-trifluoromethyl-1 $\mathbf{H}-1,2,4$-triazole

O. Ya. Borbulevych, ${ }^{a}$ O. V. Shishin, ${ }^{a}$ S. M.

Desenko, ${ }^{b}$ V. N. Chernenko and V. D. Orlov ${ }^{b}$
${ }^{a}$ A. N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28 Vavilov str., Moscow 117813, Russia, and ${ }^{b}$ Kharkov State University, 4 Svobodi sq., Kharkov 310077, Ukraine. E-mail: shil@xrpent.ineos. ac.ru
(Received 10 July 1997; accepted 23 October 1997)

Abstract

The bond lengths in the five-membered ring of the title compound, $\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~F}_{3} \mathrm{~N}_{4}$, (1), are equal within three standard deviations to those in 5 -amino-3-nitro- 1 H -1,2,4-triazole. The amino group in (1) has a trigonal-

